Теория и практика сыродутного процесса


 
Теория и практика сыродутного процесса

Несмотря на многочисленные проведенные эксперименты и теоретические описания сыродутного процесса, в нем остается достаточно много неясного. Сторонники традиционной точки зрения считают, что железная руда восстанавливалась до металла в твердом состоянии в виде пористой пастообразной низкоуглеродистой массы, сквозь которую проникал вязкий железистый шлак, хорошо плавящийся при температуре выше 1200 °С.

В результате пористое железо образовывало достаточно плотную крицу и обычно не было насыщено углеродом. Лишь в отдельных местах формировались науглероженные зоны. Целью плавки было получение как можно более мягкого (низкоуглеродистого) ковкого металла.

Некоторые исследователи полагают, что в ходе сыродутной плавки в зонах печи, где температура составляла 800–1200 °С, частицы железа сначала науглероживались, а затем плавились в виде чугуна. Однако потом происходило повторное окисление углерода и металла в фурменной зоне печи, температура в которой превышала 1400 °С. Ряд авторов полагает, что в обеих вышеупомянутых теориях есть доля истины, так как, несмотря на малые размеры первых сыродутных горнов или благодаря им, а возможно, в зависимости от способа подготовки и загрузки шихты в горн в различных его зонах могли проходить оба процесса. Поэтому продукты сыродутного производства могли содержать и высоконауглероженный металл, и даже частицы чугуна.

Схема сыродутного процесса (по Плейнеру и Толандеру)
1 – подача воздушного дутья через фурму; 2 – выпуск шлака; 3 – формирование железной крицы 

Существует также точка зрения, согласно которой процесс получения крицы мог быть двухстадийным. В этом случае в ходе первой стадии плавки руды получали частично восстановленный или металлизованный «агломерат». На второй стадии этот агломерат переплавляли с получением плотной железной крицы или чугуна.

Согласно описанию авторитетного исследователя сыродутного процесса Р. Плейнера изотермы во время плавки в печи напоминали пламя свечи, что являлось следствием формирования потоков газа и материалов. Температура в зоне горения превышала 1400 °С, однако всего в нескольких сантиметрах от нее она снижалась до 1200–1300 °С, а на колошнике составляла 500–700 °С, что соответствует примерно температуре горения в открытом костре при интенсивном притоке воздуха.

Печь со шлакоприемником из Закарпатской Украины (начало 1-го тысячелетия) 

В верхней части печи с температурой 500–550 °С кусок гематитовой руды терял влагу и становился пористым. До зоны с температурной 700–750 °С бoльшая часть гематита (Fe2O3) руды восстанавливалась до магнетита (Fe3O4) и монооксида железа (FeO), а на поверхности кусков руды постепенно образовывался тонкий слой металлического железа. Под воздействием сильной восстановительной атмосферы начинался процесс науглероживания. Наиболее активно он проходил в области температур, превышающих 900 °С, когда γ-железа поглощало углерод из газа: 3Fe + 2CO = Fe3C + CO2↑.

Высокий сыродутный горн из Африки (начало ХХ в.): а – фото; б – принципиальная схема процесса 

В кусках частично восстановленной руды содержались остаточные минералы, пустая порода, монооксид железа и металлическое железо. Углерод из СО (2СО → С + СО2) проникал в трещины и поверхностный слой металлического железа. При этом давление газа оказывалось достаточно высоким для проникновения (диффузии) углерода в железную оболочку. «Конгломерат» из остаточных минералов, монооксида железа, вкраплений древесного угля, заключенных в пористую металлическую пленку, опускался на нижние уровни, где температура составляла около 1200 °С. В этой зоне печи частицы пустой породы активно взаимодействовали с монооксидом железа с образованием фаялита (Fe2SiO4), который представлял собой основную составляющую шлака сыродутной плавки. Расплавленный шлак проникал через поры в «конгломерате» и опускался на подину печи. Поскольку главной составляющей шлака был фаялит, на начальном этапе освоения технологии потери железа со шлаком были чрезвычайно высоки – до 80 % количества железа, загруженного в агрегат.

Оболочки металлического железа с разным содержанием углерода, корольки (капли) сильно науглероженного железа, частички окалины опускались вниз горна и формировали крицу – ком губчатого железа, в который также попадали кусочки несгоревшего древесного угля и комки шлака. На первых порах освоения технологии масса крицы редко превышала 1–2 кг. Она содержала большое количество включений шлака и древесного угля, поэтому ее подвергали механической обработке для удаления примесей. Только после этого приступали к кузнечной термомеханической обработке металла.

ПОДЕЛИСЬ ИНТЕРЕСНОЙ ИНФОРМАЦИЕЙ

Оставь комментарий